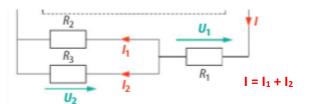

QUELQUES RAPPELS

• Un générateur est un dipôle qui fournit de l'énergie électrique au circuit.


Un récepteur est un dipôle qui convertit l'énergie électrique qu'il reçoit en une autre forme d'énergie.

- Convention générateur: la flèche de tension et la flèche de courant sont dans le même sens.
- Convention récepteur: la flèche de tension et la flèche de courant ont des sens contraires.

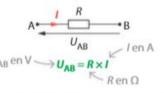
La somme des intensités des courants arrivant sur un nœud est égale à la somme des intensités des courants qui en partent.

Un débit de charges électriques

L'intensité / du courant électrique est le rapport de la charge électrique Q ayant traversé une section de conducteur pendant la durée Δt .

$$l \text{ en A} \longrightarrow l = \frac{Q}{\Delta t} \leftarrow Q \text{ en C}$$

$$\triangle t \text{ en s}$$


Intensité

Dans un circuit série

L'intensité du courant électrique est la même en tout point d'une portion de circuit comportant des dipôles associés en série.

Loi d'Ohm

La tension U_{AB} aux bornes du conducteur ohmique est proportionnelle à l'intensité I du courant qui le traverse.

R est la résistance du conducteur ohmique.


CIRCUITS ÉLECTRIQUES

électrique

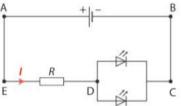
Tension électrique

Loi des mailles

Dans une maille, la somme des tensions fléchées dans un sens de parcours de la maille est égale à la somme des tensions fléchées dans l'autre sens.

 $U_{AB} + U_{BC} + U_{CD} + U_{DE} = U_{AE}$

Une petite capsule bilan


POUR S'ENTRAINER

Réactiver ses connaissances

On considère le schéma simplifié du circuit électrique d'une lampe de poche. La tension aux bornes du générateur est $U_{\rm AB}=5,0$ V. Les deux DEL sont protégées par un conducteur ohmique de résistance $R=100~\Omega$. Lorsque les DEL fonctionnent, la tension à leurs bornes est égale à 2,2 V.

- **1.** Calculer la tension $U_{\rm ED}$ aux bornes du conducteur ohmique lorsque les DEL fonctionnent normalement.
- 2. Calculer l'intensité / du courant électrique circulant dans le conducteur ohmique.
- **3.** Calculer la charge électrique *Q* qui traverse le conducteur ohmique durant 100 s de fonctionnement des DEL.

POUR VERIFIER QUE TU ES AU POINT

QCM