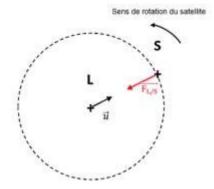
CORRECTION Yohan Atlan © https://www.vecteurbac.fr/

CLASSE: Terminale SESSION: 2021 Polynésie

VOIE : Générale **ENSEIGNEMENT DE SPÉCIALITÉ**: PHYSIQUE-CHIMIE **DURÉE DE L'EXERCICE** : 0h52 **CALCULATRICE AUTORISÉE** : Oui « type collège »

EXERCICE au choix du candidat


EXERCICE B

L'installation de l'Homme sur la Lune (5 points) Mots-clés : Satellite, repère de Frenet, chute libre.

1.

Un satellite lunostationnaire est un satellite qui est fixe par rapport à un observateur placé sur la lune. Sa période de révolution doit être exactement la même que la période de rotation la de la lune sur elle même.

2.

3.

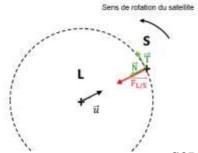
$$\overrightarrow{F_{L/S}} = -G \, . \frac{{\scriptstyle M_S \times M_L}}{{\scriptstyle d_{LS}^2}} \vec{u}$$

4.

Système: satellite

Référentiel: Lunocentrique

D'après la 2nd loi de Newton :


$$\Sigma \overrightarrow{F_{\text{ext}}} = M_{\text{S}} \vec{a}_{\text{G}}$$

$$\overrightarrow{F_{L/S}} = M_S \vec{a}_G$$

$$-G \cdot \frac{M_S \times M_L}{d_{LS}^2} \vec{u} = M_S \vec{a}_G$$

$$\vec{a}_G = -G \cdot \frac{M_L}{d_{LS}^2} \vec{u}$$

5.

Pour un mouvement circulaire, dans le repère de Frenet, le vecteur accélération est de la forme:

$$\vec{a}_G = \frac{v^2}{r} \vec{N} + \frac{dv}{dt} \vec{T}$$

$$\vec{a}_{\rm G} = -G \cdot \frac{M_{\rm L}}{d_{\rm LS}^2} \vec{u}$$
 (Question 4)

$$\vec{\mathrm{u}} = -\vec{\mathrm{N}}$$

$$\vec{a}_G = G \cdot \frac{M_L}{d_{LS}^2} \vec{N}$$

8.

$$\vec{a}_G = \frac{v^2}{r} \vec{N} + \frac{dv}{dt} \vec{T}$$
 (Question 6)
 $\vec{a}_G = G \cdot \frac{M_L}{d_{LS}^2} \vec{N}$ (Question 7)

L'accélération étant unique, par identification :

1)
$$\frac{dv}{dt} = 0$$
 donc la vitesse est constante.
2) $\frac{v^2}{r} = G \cdot \frac{M_L}{d_{LS}^2}$

$$\frac{v^2}{r} = G \cdot \frac{M_L}{d_{LS}^2}$$

Avec
$$r = d_{LS}$$

$$v^{2} = G \cdot \frac{M_{L}}{d_{LS}^{2}} d_{LS}$$

$$v^{2} = G \cdot \frac{M_{L}}{d_{LS}}$$

$$v^2 = G \cdot \frac{M_L}{d_{LG}}$$

$$v = \sqrt{\frac{G \times M_L}{d_{LS}}}$$

La période de révolution est :

$$T = \frac{\text{P\'erim\`etre d'un cercle}}{\text{vitesse}} = \frac{2\pi r}{v} = \frac{2\pi d_{LS}}{\sqrt{\frac{G \times M_L}{d_{LS}}}} = 2\pi d_{LS} \sqrt{\frac{d_{LS}}{G \times M_L}}$$

Mettons T au carré:

$$T^2 = 4 \pi^2 d_{LS}^2 \frac{d_{LS}}{G \times M_L} = 4 \pi^2 \frac{d_{LS}^3}{G \times M_L}$$

Isolons $\mathbf{d_{LS}}$:

$$4\pi^2 \tfrac{d_{LS}^3}{G\times M_L} = T^2$$

$$d_{LS}^3 = T^2 \times \frac{G \times M_L}{4\pi^2}$$

$$d_{LS} = \sqrt[3]{T^2 \times \frac{G \times M_L}{4\pi^2}} \, \text{ou} \ d_{LS} = (T^2 \times \frac{G \times M_L}{4\pi^2})^{\frac{1}{3}}$$

$$\begin{split} &\text{Or } d_{LS} = R_L + H \\ &R_L + H = \sqrt[3]{T^2 \times \frac{G \times M_L}{4\pi^2}} \\ &H = \sqrt[3]{T^2 \times \frac{G \times M_L}{4\pi^2}} - R_L \\ &H = \sqrt[3]{(27.3 \times 24 \times 60 \times 60)^2 \times \frac{6.67 \times 10^{-11} \times 7.34 \times 10^{22}}{4\pi^2}} - 1.74 \times 10^6 \\ &H = 8.66 \times 10^7 \text{m} \end{split}$$

10.

 \vec{V}_0 est tangent à la trajectoire. On projette ensuite sur l'axe Oy (axe des altitudes) pour \vec{V}_{0x} et l'axe Ox (axe des abscisses) pour \vec{V}_{0y}

 $\vec{\mathbf{g}}_{\mathbf{L}}$ est verticale et dirigé vers le bas.

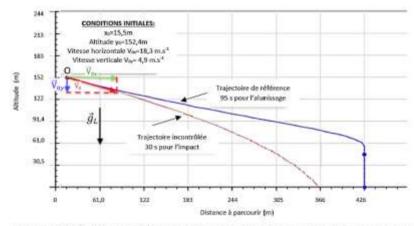


Figure 1. Trajectoire de référence et incontrôlée d'un atterrisseur lunaire dans le plan vertical

11.

Sur le document précèdent, on remarque que les vecteurs \vec{V}_{0y} et \vec{g}_L sont dirigé vers le bas. Ainsi lorsqu'ils sont projetés sur l'axe Oy (dont le vecteur unitaire est orienté vers le haut) , un signé «-» apparaît devant les termes les contenants.

yo est positif, ainsi un signe «+» apparaît devant yo.

12.

la durée t de descente de l'alunisseur s'il était en chute libre correspond au temps pour laquelle il touche le sol en trajectoire incontrôlée soit x=366m (voir Figure 1)

équation horaire (1) :
$$x(t) = V_{0x} \times t + x_0$$

$$V_{0x} \times t + x_0 = x(t)$$

$$V_{0x} \times t = x(t) - x_0$$

$$t = \frac{x(t) - x_0}{V_{0x}}$$
$$t = \frac{366 - 15,5}{18,3}$$

t = 19.2 s

Ce temps est différent de la durée de descente dans sa trajectoire incontrôlée (30s sur la figure 1). L'alunisseur dans sa trajectoire incontrôlée n'est donc pas en chute libre.